ORGANIC LETTERS

2009 Vol. 11, No. 6 1337–1340

A New Route to Substituted Phenols by Cationic Rhodium(I)/BINAP Complex-Catalyzed Decarboxylative [2+2+2] Cycloaddition

Hiromi Hara, Masao Hirano, and Ken Tanaka*

Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

tanaka-k@cc.tuat.ac.jp

Received January 20, 2009

ABSTRACT

A new route to substituted phenols has been developed by cationic rhodium(I)/BINAP complex-catalyzed decarboxylative [2+2+2] cycloadditions of 1,6- and 1,7-diynes with commercially available vinylene carbonate.

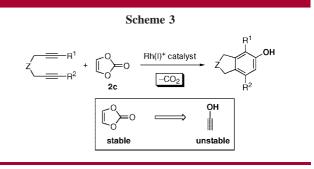
Transition-metal-catalyzed [2+2+2] cycloadditions of tethered diynes with alkynes have been widely employed for the regioselective synthesis of substituted aromatic compounds. Instead of alkynes, alkenes possessing a leaving group can be employed as alkyne equivalents. As such, Takeuchi and co-workers first reported a neutral iridium(I)/dppe complex-catalyzed [2+2+2] cycloaddition of a 1,6-diyne with n-butyl vinyl ether at elevated temperature (70 °C), which furnishes a tetrasubstituted benzene through elimination of n-butanol in moderate yield. Pollowing this pioneering report, our research group recently reported cationic rhodium(I)/BINAP complex-catalyzed [2+2+2]

cycloadditions^{6–9} of 1,6-diynes with enol ethers. ¹⁰ The high Lewis acidity of the cationic rhodium(I)/BINAP complex facilitates the elimination of an alcohol even at room temperature, which significantly improved the yields of the desired tetra- and pentasubstituted benzenes. Furthermore, the use of the cationic rhodium(I)/BINAP complex as a catalyst enabled a [2+2+2] cycloaddition of 1,6-diyne 1a with ketene acetal 2a at room temperature, which furnished the corresponding bicyclic methoxybenzene 3aa in quantitative yield (Scheme 1). ^{10,11}

Scheme 1 Z = Me + MeO OMe Z = Me + MeO OMe Z = C(CO₂Me)₂ (5 equiv) <math display="block">Z = C(CO₂Me)₂ (5 equiv) Z = C(CO₂Me)₂ (5 equiv) <math display="block">Z = C(CO₂Me)₂ (5 equiv)

Takeuchi and co-workers also reported that the neutral iridium(I)/dppe complex catalyzes a [2 + 2 + 2] cycloaddition of a 1,6-diyne with a cyclic enol ether (2,3-dihydrofuran) instead of an acyclic enol ether (n-butyl vinyl ether)

⁽¹⁾ For recent reviews of transition-metal-catalyzed [2 + 2 + 2] cycloadditions, see: (a) Tanaka, K. Chem. Asian J. 2009, 4, Epub ahead of print, DOI: 10.1002/asia.200800378. (b) Varela, J. A.; Saá, C. Synlett 2008, 2571. (c) Shibata, T.; Tsuchikama, K. Org. Biomol. Chem. 2008, 1317. (d) Heller, B.; Hapke, M. Chem. Soc. Rev. 2007, 36, 1085. (e) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria, M. In Organic Reactions; Overman, L. E., Ed.; John Wiley & Sons: Hoboken, 2007; Vol. 68, p. 1. (f) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307. (g) Gandon, V.; Aubert, C.; Malacria, M. Chem. Commun. 2006, 2209. (h) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741. (i) Gandon, V.; Aubert, C.; Malacria, M. Curr. Org. Chem. 2005, 9, 1699. (j) Yamamoto, Y. Curr. Org. Chem. 2005, 9, 503. (k) Varela, J.; Saá, C. Chem. Rev. 2003, 103, 3787.


⁽²⁾ Kezuka, S.; Tanaka, S.; Ohe, T.; Nakaya, Y.; Takeuchi, R. J. Org. Chem. 2006, 71, 543.

to furnish an aromatic alcohol in high yield. 3,12,13 Thus, a [2+2+2] cycloaddition of 1,6-diyne **1a** with a 2,3-dihydro-1,4-dioxin (**2b**) was examined in the presence of the cationic rhodium(I)/BINAP complex (5 mol %). Pleasingly, the reaction proceeded at room temperature to furnish the expected ethyleneglycol monoaryl ether **3ab** in good yield (Scheme 2).

We anticipated that the use of commercially available vinylene carbonate (2c) instead of 2,3-dihydro-1,4-dioxin (2b) would furnish substituted bicyclic phenols through elimination of carbon dioxide. ^{14–16} If this new route to phenol derivatives is realized, vinylene carbonate (2c) can

- (3) For the first discovery of a neutral iridium(I)/bisphosphine complex-catalyzed [2 + 2 + 2] cycloaddition of alkynes, see: (a) Takeuchi, R.; Tanaka, S.; Nakaya, Y. *Tetrahedron Lett.* **2001**, *42*, 2991. For their related reports, see: (b) Takeuchi, R.; Nakaya, Y. *Org. Lett.* **2003**, *5*, 3659. (c) Kezuka, S.; Okado, T.; Niou, E.; Takeuchi, R. *Org. Lett.* **2005**, *7*, 1711. (d) Onodera, G.; Matsuzawa, M.; Aizawa, T.; Kitahara, T.; Shimizu, Y.; Kezuka, S.; Takeuchi, R. *Synlett* **2008**, 755.
- (4) For a review of neutral iridium(I)/bisphosphine complex-catalyzed enantioselective [2+2+2] cycloadditions, see ref 1c.
- (5) Although palladium-catalyzed [2+2+2] cycloadditions of dimethyl acetylenedicarboxylate with vinyl ethers and esters were reported, the reactions required a large excess of the vinyl compounds and a long reaction time; see: Stephan, C.; Munz, C.; Dieck, H. T. *J. Organomet. Chem.* **1993**, 452, 223.
- (6) For the first discovery of a cationic rhodium(I)/biaryl bisphosphine complex-catalyzed [2 + 2 + 2] cycloaddition of alkynes, see: (a) Tanaka, K.; Shirasaka, K. *Org. Lett.* **2003**, *5*, 4697. See also: (b) Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka, K.; Hirano, M. *Chem. Eur. J.* **2005**, *11*, 1145.
- (7) For our accounts of cationic rhodium(I)/biaryl bisphosphine complex-catalyzed [2 + 2 + 2] cycloadditions, see: (a) Tanaka, K. Synlett **2007**, 1977. (b) Tanaka, K.; Nishida, G.; Suda, T. J. Synth. Org. Chem. Jpn. **2007**, 65, 862.
- (8) For a review of rhodium-catalyzed [2 + 2 + 2] cycloadditions, see: Fujiwara, M.; Ojima, I. In *Modern Rhodium-Catalyzed Organic Reactions*; Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005; p 129.
- (9) For cationic rhodium(I)/biaryl bisphosphine complex-catalyzed [2 + 2 + 2] cycloadditions involving monoenes, see: (a) Tsuchikama, K.; Kuwata, Y.; Shibata, T. J. Am. Chem. Soc. 2006, 128, 13686. (b) Tanaka, K.; Nishida, G.; Sagae, H.; Hirano, M. Synlett 2007, 1426. (c) Shibata, T.; Kawachi, A.; Ogawa, M.; Kuwata, Y.; Tsuchikama, K.; Endo, K. Teraka, K. Org. Lett. 2008, 10, 2825. (e) Tanaka, K.; Takahashi, M.; Imase, H.; Osaka, T.; Noguchi, K.; Hirano, M. Tetrahedron 2008, 64, 6289.
- (10) (a) Hara, H.; Hirano, M.; Tanaka, K. *Org. Lett.* **2008**, *10*, 2537. (b) Hara, H.; Hirano, M.; Tanaka, K. Submitted for publication.
- (11) For cationic rhodium(I)/BINAP complex-catalyzed [2+2+2] cycloadditions of diynes with alkynyl ethers en route to aryl ethers, see: Clayden, J.; Moran, W. J. *Org. Biomol. Chem.* **2007**, *5*, 1028.
- (12) A cobalt-mediated [2+2+2] cycloaddition of an alkynylboronic pinacolate ester with 2,3-dihydrofuran was reported. Not the corresponding aromatic alcohol but the corresponding diborylated cyclohexadiene was obtained as a major product; see: Geny, A.; Leboeliguf, D.; Rouquié, G.; Vollhardt, K. P. C.; Malacria, M.; Gandon, V.; Aubert, C. *Chem. Eur. J.* **2007**, *13*, 5408.
- (13) For transition-metal-catalyzed [2 + 2 + 2] cycloadditions of 1,6-diynes with 2,5-dihydrofuran to form substituted bicyclic cyclohexadienes, see: (a) Yamamoto, Y.; Kitahara, H.; Ogawa, R.; Itoh, K. *J. Org. Chem.* **1998**, *63*, 9610. (b) Varela, J. A.; Rubin, S. G.; González-Rodríguez, C.; Castedo, L.; Saá, C. *J. Am. Chem. Soc.* **2006**, *128*, 9262.

be used as a stable equivalent of unstable hydroxyacetylene (Scheme 3).

We first investigated the reaction of 1,6-diyne 1a and vinylene carbonate (2c, 5 equiv) in the presence of the cationic rhodium(I)/BINAP complex (5 mol %). We were pleased to find that the expected decarboxylative [2+2+2] cycloaddition proceeded at room temperature to give the corresponding bicyclic phenol 3ac in 64% yield (Table 1,

Table 1. Screening of Reaction Conditions for [2 + 2 + 2] Cycloaddition of 1,6-Diyne **1a** with Vinylene Carbonate (**2c**)^a

entry	catalyst	$temp\ (^{\circ}C)$	$\mathrm{convn}\ (\%)^b$	yield $(\%)^b$
1	[Rh(cod) ₂]BF ₄ /BINAP	rt	85	64
2	$[Rh(cod)_2]BF_4/Segphos$	rt	83	29
3	$[Rh(cod)_2]BF_4\!/H_8\text{-}BINAP$	rt	100	54
4	$[Rh(nbd)_2]BF_4/dppe$	rt	48	18
5	[Rh(cod)Cl] ₂ /2BINAP	rt	0	0
6	[Ir(cod) ₂]BF ₄ /BINAP	rt	0	0
7	[Ir(cod)Cl] ₂ /2BINAP	rt	0	0
8	$[Ir(cod)Cl]_2/2dppe$	rt	0	0
9	$[Rh(cod)_2]BF_4\!/\!BINAP$	40	100	76

 a [Rh(cod)₂]BF₄ (0.0075 mmol), ligand (0.0075 mmol), **1a** (0.150 mmol), **2c** (0.750 mmol), and CH₂Cl₂ or (CH₂Cl)₂ (0.8 mL) were used. b Determined by 1 H NMR.

entry 1). Thus, various rhodium(I)/bisphosphine complexes were screened. Cationic rhodium(I) complexes with bisphosphine ligands (BINAP, Segphos, H₈-BINAP, and dppe) were able to catalyze this reaction (entries 1–4), and BINAP was the best for the product selectivity (entry 1).¹⁷ On the other hand, a neutral rhodium(I)/BINAP complex and both cationic and neutral iridium(I)/BINAP complexes were not able to catalyze this reaction at all (entries 5–7). The neutral

1338 Org. Lett., Vol. 11, No. 6, 2009

iridium(I)/dppe complex, which was employed for the [2 + 2 + 2] cycloaddition of a 1,6-diyne with enol ethers,³ showed no catalytic activity (entry 8). Increasing the reaction temperature to 40 °C realized complete conversion of $\mathbf{1a}$, which improved the yield of $\mathbf{3ac}$ to 76% (entry 9).

Thus, we explored the scope of 1,6-diynes by using 5 equiv of vinylene carbonate (2c) and 5 mol % of the cationic rhodium(I)/BINAP complex as shown in Table 2. With

Table 2. Cationic Rh(I)/BINAP-Catalyzed Decarboxylative [2 + 2 + 2] Cycloadditions of 1,6-Diynes 1a-h with $2c^a$

entry	1	2c (equiv)	3 / yield (%) ^b
			Ме
	$_{\text{MeO}_2\text{C}_{\checkmark}}$ — Me		MeO ₂ C,
	MeO ₂ C ——Me		MeO ₂ C
			Me
1	1a	5	3ac 66
2 ^c	1a	5	3ac 61
	Ac / — Me		Me OH
	X		ACX Y I
	Ac´ ——Me		Ac Ac
0	46	_	Me 3bc 58 ^d
3	1b	5	Me
	MeO—Me		MeO OH
	X		X I II
	MeO—/ \Me		MeO
4	1c	5	Me 3cc 65
			Me
	Me		OH
	TsN <u></u> ——Me		TsN
			Me
5	1d	5	3dc 82
			Me
	√ = Me		OH
	———Me		
		_	Me
6	1e	5	3ec 55 Et
	/─ = ─Et		~ \landsquare OH
	Q		
	<u> </u>		
7	1f	5	Et 3fc 65
,		Ŭ	Ph
	/ Ph		OH
	OPh		o l
	— '''		Ť Ph
8	1g	25	3gc 75
	MeO ₂ C、/==		MeO ₂ C
	MeO ₂ C =		MeO ₂ C
9	1h	25	3hc 14

 a Reactions were conducted using [Rh(cod)₂]BF₄ (0.015 mmol), BINAP (0.015 mmol), **1a**-**h** (0.300 mmol), **2c** (1.50 or 7.50 mmol), and (CH₂Cl)₂ (2.0 mL) at 40 °C for 16 h. b Isolated yield. c Catalyst: 2 mol %. At 80 °C for 20 h. d Isolated as a mixture of **3bc** and dimer of **1b**. Yield of **3bc** was determined by 1 H NMR.

respect to tethers, not only malonate- (1a, entry 1) but also acetylacetone- (1b, entry 3), dimethoxypropane- (1c, entry

4), tosylamide- (1d, entry 5), and oxygen-linked (1e, entry 6) internal 1,6-diynes could be employed for this reaction. With respect to substituents at alkyne termini, not only methyl- (1a-e, entries 1-6) but also ethyl- (1f, entry 7) and phenyl-substituted (1g, entry 8) internal 1,6-diynes could participate in this reaction. ¹⁸ Unfortunately, terminal 1,6-diyne 1h reacted with 2c to give the corresponding bicyclic phenol 3hc in low yield even using a large excess of 1h (25 equiv) due to the rapid homo-[2 + 2 + 2] cycloadditon of 1h (entry 9). Although elevated temperature (80 °C) was necessary, the catalyst loading could be reduced to 2 mol % with only a slight erosion of the product yield (entry 2).

Next, the reactions of 1,7-diynes and vinylene carbonate (2c) were investigated as shown in Table 3. The reaction of

Table 3. Cationic Rh(I)/BINAP-Catalyzed Decarboxylative [2 + 2 + 2] Cycloadditions of 1,7-Diynes 1i-m with $2c^a$

_		•	
entry	1	2c (equiv)	3 / yield (%) ^b
	$\begin{array}{ccc} \operatorname{EtO_2C} & & & -\operatorname{Me} \\ \operatorname{EtO_2C} & & & -\operatorname{Me} \\ \operatorname{EtO_2C} & & & -\operatorname{Me} \end{array}$		EtO ₂ C Me EtO ₂ C OH EtO ₂ C Me
1	1 i	5	3ic 88
	——Me		Me OH Me
2	1j	25	3jc 34
	Et Et		Et OH
3	1k	25	3kc 65
	——Ph		Ph OH
4 ^c	11	25	3lc 65
			ОН
5	1m	25	3mc <5

 a Reactions were conducted using [Rh(cod)₂]BF₄ (0.015 mmol), BINAP (0.015 mmol), **1i**–**m** (0.300 mmol), **2c** (1.50 or 7.50 mmol), and (CH₂Cl)₂ (2.0 mL) at 40 °C for 16 h. b Isolated yield. c At 80 °C for 40 h.

ethanetetracarboxylate-linked 1,7-diyne **1i** and **2c** (5 equiv) proceeded in high yield (entry 1), whereas that of 2,8-decadiyne **1j** and **2c** proceeded in low yield even using excess **2c** (25 equiv, entry 2). With respect to substituents at the alkyne termini, the reaction with ethyl-substituted internal 1,7-diyne **1k** (entry 3) proceeded in higher yield than that with methyl-substituted internal 1,7-diyne **1j** because of the slow homo-[2 + 2 + 2] cycloaddition of **1k** (entry 3). In the case of phenyl-substituted 1,7-diyne **1l**, the corresponding bicyclic phenol **3lc** was obtained in good yield at elevated temperature (80 °C, entry 4). Like the reaction with terminal 1,6-diyne **1h**, terminal 1,7-diyne **1m** was not a suitable

Org. Lett., Vol. 11, No. 6, 2009

coupling partner for 2c due to the rapid homo-[2 + 2 + 2] cycloaddition of 1m, and thus the corresponding cycloadduct 3mc was obtained in only a trace amount (entry 5).

A possible mechanism for the present decarboxylative [2 + 2 + 2] cycloaddition of 1,6- and 1,7-diynes 1 with vinylene carbonate (2c) is shown in Scheme 4. Diyne 1 reacts

Scheme 4

$$Z = R R Rh(I)^{+} R Rh^{+} R R Rh(I)^{+}$$

$$A Rh(I)^{+} Z Rh(I)^{+}$$

$$A Rh(I)^{+} Z Rh(I)^{+}$$

$$A Rh(I)^{+} Z Rh(I)^{+}$$

with rhodium to form rhodacyclopentadiene intermediate **A**. Subsequent insertion of **2c** followed by reductive elimination of rhodium furnishes carbonate **B**. 19 Coordination of the cationic rhodium(I) complex to the carbonyl group of

carbonate **B** would facilitate the elimination of carbon dioxide to form bicyclic phenol **3**.

In conclusion, we have developed a new route to substituted phenols by cationic rhodium(I)/BINAP complex-catalyzed decarboxylative [2+2+2] cycloadditions of 1,6-and 1,7-diynes with commercially available vinylene carbonate. Application of the present decarboxylative cycloaddition approach to various annulation reactions and developing asymmetric variants of this reaction are underway in our laboratory.

Acknowledgment. This work was supported partly by a Grant-in-Aid for Scientific Research (no. 20675002) from JSPS, Japan. We are grateful to Takasago International Corporation for the gift of Segphos and H_8 -BINAP, and Umicore for generous supports in supply of rhodium and iridium complexes.

Supporting Information Available: Experimental procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL900123D

Org. Lett., Vol. 11, No. 6, 2009

⁽¹⁴⁾ Transition-metal-catalyzed syntheses of substituted phenols through benzannulation by means of ring-closing methathesis have been reported; see: (a) Yoshida, K.; Imamoto, T. *J. Am. Chem. Soc.* **2005**, *127*, 10470. (b) Yoshida, K.; Horiuchi, S.; Iwadate, N.; Kawagoe, F.; Imamoto, T. *Syntetter* **2007**, 1561. (c) Yoshida, K.; Narui, R.; Imamoto, T. *Chem. Eur. J.* **2008**, *14*, 9706. (d) Yoshida, K.; Kawagoe, F.; Hayashi, K.; Horiuchi, S.; Imamoto, T.; Yanagisawa, A. *Org. Lett.* **2009**, *11*, 515.

⁽¹⁵⁾ A platinum-catalyzed intramolecular reaction of furans with alkynes, leading to substituted phenols, was reported; see: Martin-Matute, B.; Cárdenas, D. J.; Echavarren, A. M. *Angew. Chem., Int. Ed.* **2001**, *40*, 4754.

⁽¹⁶⁾ A synthesis of substituted 1-naphthols through Diels—Alder reaction of 3-silylbenzynes with substituted furans followed by acid-mediated aromatization was reported; see: Akai, S.; Ikawa, T.; Takayanagi, S.-I.; Morikawa, Y.; Mohri, S.; Tsubakiyama, M.; Egi, M.; Wada, Y.; Kita, Y. *Angew. Chem., Int. Ed.* **2008**, *47*, 7673.

⁽¹⁷⁾ Other than the desired phenol product 3ac, the homo-[2+2+2] cycloaddition product of 1a was obtained as a by-product in 13% isolated yield.

⁽¹⁸⁾ An ether-linked 1,6-diyne, possessing methoxycarbonyl groups at the alkyne termini, failed to react with 2c as a result of its rapid homo-[2 + 2 + 2] cycloaddition.

⁽¹⁹⁾ Isolation and ${}^{1}H$ NMR observation of intermediate **B** have not been accomplished at the present stage.